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VARIABLE COLLISION FREQUENCY EFFECTS ON

HOSE AND SAUSAGE INSTABILITIES IN

RELATIVISTIC ELECTRON BEANS

I. INTRODUCTION

The resistive hose instability appears to be the dominant process

leading to the observed disruption of propagation seen in many relativistic

electron beam experiments. In these experiments, the beam is injected

into initially neutral gas, but beam ionization of the gas leads to a rapid

rise in conductivity a as the beam passes. A number of theoretical 5 - 7 and

computational 7- 13 models have been developed to study this instability, and

the importance of the coupling between conductivity generation and beam

dynamics has been realized for some time. If the plasma is weakly ionized,

as is frequently the case, the plasma electron mobility is controlled by

the collision frequency vm for momentum transfer between plasma electrons

and neutral molecules. If v is constant, a is proportional to the plasma

electron density ne, independent of the plasma electron temperature Te, and

usually increases monotonically with distance C a ct-z from the beam head.
J 7

Lampe et al. have shown that analytical dispersion relation estimates of

the hose growth rate can be made if it is assumed that the beam and plasma

current densities Jb and Jp, conductivity generation rate da/d , and beam

relativistic factor y are constant in and z. The perturbed conductivity

a1, tends to follow the perturbed beam current J1, thus reducing the

destabilizing repulsion in the "normal" case where Jp and Jb flow in

opposite directions.

In the present paper, we discuss the effects due to the variation of

v with electron temperature T . Since T is typically controlled by ohmicm e e

heating and thus is a monotonically increasing function of the local

electric field/gas density ratio E/p, one can also think of v m as a

• ManuN ript apprrecd Mlarch 30, 1987

V1



function of E/p alone. Furthermore, p is a constant for the cases

considered in this paper, so Vm can be regarded as a function of E. In

most cases, T and E reach a peak at the "pinch point" in the expanded beame
7-15

head and decrease with in the well-pinched body and tail of the beam.

Since 8 m/aTe > 0 for most weakly ionized gases and a = n ee 2/mvm,1 6 - 18 this

causes conductivity to increase more rapidly with after the pinch point

than does ne. Instability growth in C is characterized by the dipole decay

length
5 - 7

no(.)a2

-1 t = 2c '

where a is the beam scale radius and oa 0 (r = 0). The combination of

0

small ne and large vm in the front of the beam can lead to very rapid hose

instability growth in this region. However, the much larger n and smaller
n e

* M in the beam tail can cause hose growth rates to become quite small. As

a result, the saturated transverse beam displacement Y sat() can approach a

constant value in the beam tail, contributing to the "plateau" behavior

observed in many hose simulations.9,11,13,14 In contrast, Ysat(Q displays

power law growth if da/d and vm are assumed to be constant.
5' 7

This paper will also discuss a destabilizing mechanism associated with

the perturbed conductivity 7 aI when avm /E > 0 or v /aT > 0. As pointed[ - mm e

out previously, a1 reduces instability growth when vm is constant because

the local conductivity and electron density increase in regions where the

distortion associated with the instability increases the beam density.

However, the electric field IEzl also increases in such regions, thus

increasing v and decreasing a. This results, in some cases, in a

substantial increase in hose growth. 1 3 If j is assumed to be a function
.

of E/p only, we shall show that the monopole (unperturbed) conductivity in

the perturbed Ampere's law can be replaced by

9b, 2
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Sa a (I -m (2)
* E aE0 j

Since q can exceed 0.5 for air, hose growth rates can be substantially

increased. This destabilizing mechanism competes with the stabilizing

effect of perturbed conductivity described by Lampe et al. Equation (2)

represents one of the major results of this study.

In Sec. II of this paper we derive equations for the perturbed

conductivity and fields when vm is a function of E. Specializing further,

we obtain analytic solutions for beam equilibrium and hose instability for

the case with constant dne /dC and vm proportional to Eq (with q constant).

Hose simulation results obtained with the VIPER multi-component simulation

model 7 are described in Sec. III. A sausage instability model using the

assumptions in Sec. II is presented in Sec. IV, showing that the

destabilizing effects of the variable collision frequency are not strong

enough except in extreme cases to give significant instability growth. The

implications of this study are discussed in the final section.
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II. THEORETICAL CONSIDERATIONS

A. Introduction

In this section, we will derive some simple models which

illustrate some of the important effects of variable vm conductivity on

hose instability. Much of this work is a direct extension of the

calculations of Lampe et al. 7 with constant vm" The spread mass beam

dynamics model5 will be employed since that model leads to tractable

dispersion relations in some situations.

B. Conductivity and Momentum Transfer Frequency

We consider the case in which the beam propagates in a resistive

medium which has a scalar conductivity given by

2ne
Se 

(3)
m

Many physical processes contribute to the determination of a(x,t), and a

variety of theoretical models, both simple and complex, have been used.

The electron density n e is determined by beam-collisional ionization,

avalanche ionization, recombination, and attachment. However, we shall

concentrate on the "beam body" region where collisional ionization

dominates, and ne is given by

dned = imb' (4)

where v is the production rate due to beam impact ionization and J is the

b

beam current density. Theoretical models are available to prescribe the

collision frequency j as a function of T . If, for example, the electronm e

distribution function f(v) is approximately isotropic with a temperature

Te, then vm is given by

U. 4

S--



IRW~W - U-T

4n[ V3 f dv (5)
V (T n- Eva .M. avme eJ mi 1

where a i(E) is the momentum transfer cross section for electron collisions

19with a species i with number density M i .1 For a Maxwellian f(v), Slinker

and Ali 17 have compiled tables of v m(T e) for N2 and 02 based on Eq. (5).

Figure 1 shows v m(T e). Alternatively, v m may be deduced from drift

20,21
velocity measurements in discharges, in which case, vm is known as a

function of the electric field/gas density ratio E/p. Over a wide range of

validity T may be expressed as a function of E/p, so that v may in anye m

case be regarded as a function of E/p. Electron heating is usually

dominated by ohmic heating and direct deposition by the beam, while

collisions with neutrals result in electron cooling through vibrational and

electronic excitations. 21 Thus

aTe ( S B 2 aE 2  2
--- R T( T- + (6)3t- s en 3C n 3 nn n(e)

e eve

where Cev = 1.6xlO-12 ergs/eV, SB is the production rate due to beam impact

ionization, cs is the average energy of a secondary electron (= 7.55 eV for

air), and Rn (Te) is the cooling rate due to collisions with neutrals with

density nn. If T e/3t = 0, and ohmic heating balances excitation cooling,

then Te is a function of E/p only. [This follows from the fact that

a = (ne /p)x(function of T ) for weakly ionized gas.] Thus v m can be

expressed as a function of E/p.
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C. Linearized Conductivity and Field Equations

The hose instability is usually treated analytically by

partitioning Jb' a, Ez , etc., into monopole (m = 0) and dipole (m = 1)
5-7

quantities, and linearizing in the dipole quantities, which are treated

as small perturbations about axi-symmetry. For example,

a(r, ,z,O) = a (r,C,Z) + al(r, ,z)cosO. (7)

We will use the 0 and 1 subscripts to denote unperturbed (m = 0) and

perturbed (m = 1) quantities. In the absence of avalanche and

recombination processes the electron density is given by

: dn
i eo

dn - bo (8a)

dnel

d -J Ubl" (8b)

If v m is a function of E/p and p is constant, then

2
n e(T eo (9a)0 M (E)

2 2 (v'
D el e neoe E

1 mM(E) m 2 1 3E I0 1
m

n
o (9b)

5
The paraxial beam approximation is made, and the conductivity is assumed

to be sufficiently large to provide space charge neutrality, so that

Er = 0. Then A becomes the only significant component of the vector
5

potential,

6
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E -E - -----------

Eo zo * (10a)

E =E - A 1(1b
1 - EZ - , (LOD)

and Maxwell's equations reduce to Ampere's law,

(I r o ~)A 0 4 o (11a)

( 1 a 41ta a' 4n 4a1 aA

- -TF r A, -i + bo'b

r r rr c I 1 c bl c Kb

Using (9b) for a1 and (10) for E and El, Eq. (lib) can be

rewritten as

~ ~ 41a (E av a 4"t
Ir r r c I V ) A B c - Jbl +  oEo neo)

Equation (12), supplemented by Eq. (8b), specifies the perturbed potential

A1 in terms of the perturbed beam current J bl It is formally similar to

Eq. (9) of Ref. 7, which was derived for the case of constant vm The

effects of beam-generated perturbed conductivity a, appear in two places --

the last term on the right-hand side (the "density term") and the last term

on the left-hand side (the "field term"). The density term has been

discussed previously. 7  For the usual case in which the plasma current Jp

is a return current flowing opposite to Jb' the density term is

stabilizing; it leads to conductivity perturbations which follow the beam

distortions and thus tend to reduce the spatial separation between beam and

plasma currents. The "field term", which is discussed for the first time

in this paper, does not change the mathematical structure of the equation,

but in essence replaces the conductivity a0  on the left-hand side by an

effective conductivity

7



* ov
-°  o(l-q), (13)

m o
*

where a , o, v,,E and q are, in general, functions of , z, and r.

Similarly, the dipole decay length TVi the characteristic length scale for

instability growth in , is replaced by an effective value,

rta (r=O)a /2c = (l-q)t I. (14)

For "normal" weakly ionized gases such as air, 0 < q < 1. Thus the

(1-q) term reduces l and increases the instability growth rate. One must

also note, however, that the dependence of v m on E also directly modifies

a in Eqs. (12) and (13). In propagating beams, E0 steadily decreases, as

a function of C, from a maximum at the "pinch point" just behind the beam

head. 2 2 Thus, in "normal" gases v is a decreasing function of , which
m

tends to augment the increase of a as a function of . This term thus

acts to speed up hose growth near the front of the beam and slow it down

further back in the beam.

In the next sections we shall derive explicit solutions of Eqs.

(8), (12), and the equations for beam dynamics that illustrate these

effects.

D. Analytic Solutions for Beam Equilibrium

A number of previous works5 - 7 have derived analytic solutions for

hose growth by introducing some additional simplifications and assumptions

in the assumed equilibrium and the beam dynamics. This has proven quite

useful, particularly for developing insight into instability growth and

scaling. In this section, we shall calculate beam equilibria, adopting the

familiar assumptions used in these earlier works, but concentrating on the

new effects introduced by variable vm . In the next section we shall use

the same assumptions to calculate hose growth analytically.

8
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We assume that the beam current Ib is constant, and that the beam

equilibrium current density Jbo has a Bennett radial profile,

S.Ib/ na 2  
_____

J bo (1+r2/a2 ) 2 (1+r 2/a2 ) 2 (

where the Bennett radius a is constant. Lee 23 has shown that, under

certain conditions, beams evolve toward the Bennett profile as a result of

scattering, and this has also been observed experimentally.2 3 ,24  The

assumption of constant Bennett radius is reasonable in the beam body. It

follows from Eq. (8a) that neo also has a Bennett profile in the beam body.

;/ An approximate solution of Eq. (11a) is then given by

A A ()(l+r 2 /a 2J (16a)
0 0 A1+R 2 /a 2 )

,
0

where A () satisfies

2- 2 2 d
nan 0e R d0 na 2-A .. M - ob'n 1 + __- (16b)0 me Vd2 c Jbo'

and R is a radius (usually R0 >> a) 5 -  where A0 goes to zero. and

no = ,jbo are the axis values, independent of r. The approximation made

in going from (11a) and (16a) to (16b) is to neglect the weak logarithmic

dependence of E - 8A 0/8r on r; this also results in the plasma current

density Jpo(r,) having a Bennett radial profile with J p(O, Jp ( )

We assume additionally that

V m(E) = 11E1 q ,  (17)

where 0 and q are constants. Thus, the correction factor q in (13) or (14)

is constant and equal to q. For many gases, this is a good assumption over

a wide range of values of E/p (with p constant). However, it must be

9
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remembered that if JEJ becomes very large, avalanche breakdown will occur,

thus invalidating Eqs. (8) and (17). If, on the other hand, jEJ becomes

very small, the temperature Te will depend on processes other than ohmic

heating, the full Eq. (6) must be used, and v will become independent

of E.

Having made these assumptions, Eq. (16b) can be rewritten as

dAo . 1-q 2

0  + - bo, (18)

where

- 2)
K m Pln (1 + R (19)

a2

where we have also used the fact that

* dA
d-- <  0, (20)

if Jbo > 0. For constant bo and Ao(Co) = 0, Eq. (18) has the solution

A(C) 1 2 -- (l - (21a). c0 bo

if q = 0, or

2 2 q q-q

Aa Jbi j 1q K 1-q -q- 1-q q

(21b)

if q * 0 and q 0 1. We are assuming > 0'

We may now consider the general nature of this equilibrium for

various ranges of q.

r.

. 10
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Case (i): q < 0. A singularity exists at some finite value C*

of C, where A - (na 2Jbo/C), E 0 0, a 0 0, and Jpo 4 0. For

C > 7.*, the only solution is E 0= = J = 0. This singularity occurs

because Eqs. (3) and (1/) specify that a goes to zero for E 4 0. It is

unphysical, of course; Eq. (17) loses its validity when IEI becomes small.

However, it can be shown that the plasma current density J decreases frompo

its initial value on a C scale that is slow compared to the scale length

,4 for hose growth essentially because of the large quantity ln(l + R 2/a )
0

in the definition of K, Eq. (19). Thus, there is a range of C where it can

be assumed that J is constant which will be seen to simplify thep0

instability calculation.

Case (ii): q = 0. This case is well known. Here Eo0
o , and Jp 1 K . The plasma current decays to zero as C 4 , but

again, this decay is slow compared to the C scale for hose growth.

Case (iii): 0 < q < 1. Here E al/l-q ~ and

J 4 const as . 4 -. This scaling eventually breaks down at large C:

either IEJ becomes so small that Eq. (17) becomes invalid, or

alternatively, recombination may become important in limiting neo, in which

case Eq. (8a) becomes invalid. In either case, Jpo eventually decays to

zero asymptotically at C - . However, it is reasonable once again to

assume that Jpo is constant over the C scale for hose growth.

Case (iv): 1 < q. This case is very peculiar, since the effective

conductivity a* is negative. If a current J is flowing in the gas, small

local increases in JEl decrease the current! Gases do exist which have

this property for certain ranges of E/p. Christophorou 26 gives several

examples, such as argon doped with C2H2. Current flow is unstable in such

a gas, even in the absence of an electron beam. since the left-hand side of

Eq. (12) is a diffusion equation with a negative diffusion coefficient. It

o.
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is thus clear that one cannot assume simple equilibria of the type

considered here. We shall not consider this case further.

E. Analytic Solution for Hose Growth

1. Conductivity and Field Equations

As we have seen in the previous subsection, if q < 1 it is

qualitatively reasonable to assume that J is constant over the C scale ofpo

primary interest for hose growth. (However, we must keep in mind that

eventually 3 does decay to zero as - .) Making this assumption, inp0

addition to those discussed previously, significantly simplifies the hose

growth problem. We shall define a current neutralization fraction

f a 3po/Jbo which is a constant. Equation (8a) reduces to

n - Jboc, (22)
eo boo

and the density term in the perturbed conductivity in (12) is

n el fJbonel fnel
oEo neo IJbo = (23)

Following Ref. 7, we take

3n el nel
K - a d _ _ = VJbl' (24)

Thus, Ampere's Law (12) takes the form

(1 3a~ r rar r c~i 0 (1-q) 1
* ATAI

c ( + + f ) J bl (25)

Equation (25) is identical to (13) in Ref. 7 if one replaces KJbo with

a (l-q) a 0

12



2. Spread Mass Hose Instability Model

In order to estimate hose instability amplitudes, the field

equation (25) must be combined with a beam dynamics model which specifies

Jbl in terms of AI. Following Ref. 7 we assume that perturbed quantities

have a z-dependence exp(-iQz) and employ the spread mass model of Lee. In

this model, the perturbed current and vector potential are assumed to be

rigid displacements of the equilibrium profiles: Jbl = - Y(dJbo/dr) and

A1 =-D(dA /dr). The displacements Y and D are related by

Y(C) = D(Q(I + G(s)), (26)

where s a Q2 , 2/ 2, 9 [2n(l + f)eJ1()/(Ymc)]I/2 is the on-axis betatron

frequency, and G(s) is Lee's spread mass weighting function 5 which for a

Bennett profile is

G(s) =6s{- s + (s - s2)[ i + 1 n (---]. (27)

Inserting these relationships into (25) along with the equilibrium

and perturbed radial dependences for Jb' ba, and A results in the following

ordinary differential equation for the field displacement D()

1

( C4~ J( + Xq (I-q)C 1--q LD =(l+G(s) + f+ , (28)dC) qdd (14f) (1

An where the constant X is
q

__ (if I1-q 9 (29)
q 2c b

2
with ii e j/mo.

We assume that E ~ , so that

13
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1

Yo( )  2c2 Xq 1-q. (30)

Equation (28) reduces to the result in Ref. 7 for q = 0; in that

case, a dispersion relation can be obtained by replacing C by in as the

independent variable. In the present case, it is not possible to derive a

dispersion relation in closed form, but the hose growth resulting from

Eq. (28) can be expressed in terms of tabulated functions or calculated by

numerical integration.

3. Kummer Function Solutions

The solution to Eq. (28) can be expressed purely analytically in

terms of confluent hypergeometric functiois. Although not very useful for

obtaining numerical results, this method can illuminate some of the

analytical properties of the instability for large ( in different ranges

of q.

Equation (28) can be rewritten as Kummer's equation,
2 5

d2D dD
w - + (b - w) L - aD = 0 (31)
dw2  dw

by changing variables to

w= (32)

Here the coefficients are

a + f-C) (33)

q

U

(34

14



The solutions are the Kummer's functions M(a,b,v) and U(a,b,w) with

arguments defined by (32), (33) and (34). The complete solution is

D((w)) = AM(a,b,w) + BU(a,b,w), (35)

with A and B arbitrary constants.

For 0 < q < 1, which is the range of interest for weakly ionized

air, the limit -4 corresponds to w 4 0. In this limit, we have

D(w=O) = A + B l(l-b) constant. (36)

This implies that the hose amplitudes in the beam tail approach a finite

asymptotic limit as < 4 m, in contrast to the case of q = 0, where it was

found in Ref. 7 that D(Q ~ < and is unbounded. In principle, it is

possible to give an analytical estimate of this bound by first assuming

that at w = 0, D = 1 and dD/dw = 0 to get A and B. One can then assume

that growth begins at a point 0 which is sufficiently small that

w( ) a w0 >> 1. Then using the asymptotic expansions for M(a,b,wo) and

U(a,b,w0 ) gives

D(w ) = A{ eb e+i~a w -a .r(b) ewo oa-b} B w . (37)
o = A o r(a) o 0

-s The ratio of hose displacements is then given by

D(C 4 D(w 4 0) (38)
D(, 0) D(w )

Since G(s) is complex, w is in general complex, so numerical solutions to

(36-38) are not easy to obtain. It is easier to simply integrate (28)

numerically, as discussed in the next subsection. Even though the hose

amplitudes have a finite limit, in most cases of interest D( - ') >>

D(_ 0 so that substantial hose growth occurs.

15
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Solution for q in other ranges can also be obtained. For q = 0,

the transformation is invalid, but this case has already been worked out in

Ref. 7. For q = 1, the effective conductivity a 0, and the instability

is absolute. The case q < 0 corresponds to having v m decrease with E, as

is the case in the Spitzer conductivity regime. In this case, b ranges

from +- (for q 4 0) to 1 for q 4 --. Then C 4 - corresponds to w 4 , and

the solutions are (Ref. 22, Eqs. 13.5.1 - 13.5.2):

_r Fub inaa bw -ab

D() = A r(b ) e w + r() wa- + Bw-a (39)r(b(a) r(a)e9w

The second term is unbounded if ReIG(l+f)/(f-G)i < 0, resulting in

unlimited hose growth. This condition is usually satisfied.

4. Direct Numerical Integration

Since the purely analytical solutions described above are

cumbersome, it is perhaps more useful to integrate the field displacement

equation (28) numerically. This requires an appropriate choice for the

starting point %° and the constant X . For q = 0, Lampe et al. used.v q

Sq=0 = X° = .044 Ib(kA), (40)

and estimated the return current fraction

f - 01 f

with n f = 1.

In ordeL to compare results with different values of q, we assume

a value of X and require that at a referencc point N, the dipole decay

length is equal to the nominal q = 0 value, XJ N . Combining (1), (14), and

(30) results in

16

w, , ' . ......................... ..'..". . %.............,-." '.. ....... .



Cl -q (42)c1 -1l-q (2

Thus, the value of Xq which gives CTl(N) = Vo is

-1 
-q

X q - (1-q)(X 0 ) - 1-q = (l-q)X,0 l-q. (43)

The starting point o for the perturbation is arbitrarily chosen

to be the point at which c 1 (C0 ) = ao, the nominal beam radius. Given X

from (43), Co can be calculated from (42) for any chosen value of c d(Co).

Finally, initial values for D D( 0) and dD(0 )/d must be chosen; we

have assumed Re D = Im D 0 12/2 and dD( , )/d = 0.

An example of hose instability growth for various values of q is

shown in Fig. 2. The following parameter values were chosen: n f = 1,

X0 = 1, N = 20 ao , f = -0.5, Qr/Qo 0.5, and cT1 (C0 ) = ao. For q = 0,

pure power law growth is observed for > 10 a. with a slope equal to the

value wi = 1.80 predicted by the dispersion relation of Ref. 7. For

q = 0.50, hose growth is very rapid in the front of the beam but flattens

out into a plateau for > 100 a . This qualitative behavior is seen for a

A wide range of X values and becomes more pronounced as q approaches 1.

", 
o:4

a.,
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III. HOSE INSTABILITY SIMULATIONS WITH VARIABLE v MODELS

A. Introduction

The hose growth behavior shown in Fig. 2 has been observed in a

variety of simulation models including VIPER,
7'1 3 SIMM1,10 SARLAC, 14

EMPULSE, 9 and PHLAP. These codes allow Jb' Jp, and ne to vary with r, ,

and z and permit Jb p, and a to have different radial profiles. In this

section, results from the VIPER multi-component simulation model will be

presented for cases with v = v m(E/p). A description of the VIPER model

and some examples with a fixed v conductivity model are contained in

Ref. 7.

B. VIPER Simulation With v E q

The case described in Sec. II can be simulated by using a momentum

transfer frequency of the form

NJ (E/p) 0 + Ep) q . (44)

The floor on v is used to avoid unrealistically large conductivity in the

weak field regions of the beam. Avalanche, recombination, and beam

expansion due to scattering have been turned off in the simulation, but Jp

and Jb do vary with z and . The principal quantity of interest is

Y sat(), the maximum or "saturated" displacement of the beam slice at a

distance , from the beam head as it propagates forward in z.

Figure 3 plots Y sat() for a series of VIPER simulations in which

the exponent q in (44) was varied. The initial perturbation began at
1

= a 0, and vm was chosen to give a reference momentum transfer frequency

of 1.4 x 10 sec- at E/p = 3 kV/cm-atm. As q is increased, Y sat() shows

the qualitative behavior seen in Fig. 2. Higher values of q give more

pronounced plateau behavior.

18
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C. VIPER Simulations With More Elaborate Conductivity Model

A more elaborate conductivity model,18 based on rate equations and

v m(T e) calculations from Slinker and Alli 7 and All, 2 1 has also been used

with VIPER. The model assumes a Te (E/p) relation deduced by Ali:
2 1

T = T + O.1(E/p) 0.8 (45)e eo

with E/p in volts/cm-torr, T in eV, and T = 0.15 eV. The totale eo

collision frequency is the sum of vm and the electron-ion contribution.

Figure 4 shows the maximum hose displacement (saturation had not

occurred by the time of the graph) as a function of . for a 10 kA, 5 mm

beam. The three curves correspond to three VIPER runs. In A, the full

dipole conductivity terms in (9b) are retained. In B, the dipole

conductivity is set equal to zero. In C, only the contribution to a1 due

to nel is retained. As seen in the figure, this part of the dipole

conductivity is stabilizing. 7 The inclusion of the av /9E term, Case A,n o

is seen to be destabilizing in accordance with theory.

Finally, Fig. 5 shows the on-axis conductivity, a, electric field
* _*

and fraction a la as a function of <. Since most of the hose growth occurs

in the region 50 < /a 0 < 300 where a*/ = 0.6 is approximately constant,

Eq. (12) suggests that inY(Case C)/lnY(Case A) should be approximately 0.6.

Figure 4 confirms this expectation.

i
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IV. SAUSAGE INSTABILITY FOR v - Eq

A. Introduction

The resistive sausage instability is excited by the repulsive

force between the beam current and return current. This is an axi-

symmetric (m = 0) mode in which the beam expands or contracts self-

similarly. For an infinite beam with constant conductivity, the

instability is excited when the ratio -I p/Ib  -f exceeds 0.69 for a

Bennett profile. 2 8 However, the instability to our knowledge has never

been unambiguously observed in simulations or experiments in which beam

impact ionization is the dominant conductivity generation mechanism.
28

Lampe and Joyce have shown that for the assumptions used 'n

Section III (f'Jbo' and da0 /d. constant), and if in addition q = 0, the

inclusion of dipole conductivity effects leads to the following instability

threshold condition on the return current fraction f:

f (2A + / )2

Vf - +f X + 1 H(aXo) (46)
00

The function H(ot,X 0) is a slowly varying function which approaches 0.8 when

the anharmonic damping coefficient, a, equals Lee's 2 9 value of 0.7, and

H(o 4 -,X ) 4 1. If one estimates f from (41), the instability condition

is not reached unless f > 4, a situation almost never observed in beam

28
simulations. Thus, Lampe and Joyce concluded that the sausage

instability should be stabilized in almost all conceivable cases for beams

propagating in initially neutral gases.

In the next section, we extend the analysis of Ref. 28 to the case

where v - (E/o)q . This introduces the destabilizing dipole conductivitym

term in Ampere's Law (12) and reduces the threshold return current fraction

- IfV



B. Derivation of Sausage Dispersion Relation

Lampe and Joyce 28 used an envelope equation approach to treat the

linearized sausage instability. The perturbed beam and plasma currents SJb

and &J are assumed to have the form
p

l-r 2/a
2

J=- (<,z) 2 (47a)
[l+r 2/a2]

3

0

and the perturbed vector potential is given by

1-r 2/a
2

A 2 (47b)
1+r 2/a 2

0

The unperturbed conductivity is given by (9a), and the perturbed

conductivity has the radial dependence given in Eq. (19) of Lampe and

Joyce. 2 8  The perturbed envelope equation can be written as

2-
-2 2'b 7 b _ (2 2 J (2/3)JP

0 2 - 0- 3z + 1)L- b + l+f , (48)

where we have changed the notation from that of Ref. 25 to be consistent

with the rest of this paper. The average betatron frequency 2b = 1/0 /V-

a- 1 ( b(+f)/IA)/2 where IA = ymc 3/e is the Alfven current.

Using the assumed radial dependence for the various quantities in

Ampere's Law results in

I LJp =j (I L ~a(r=O)(l-q) (49)

To close the system, we note that

2
Ra

5 + jJ (50)
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and Fourier analyze in z, assuming a z-dependence exp(- igg z). This gives

2
3 (1+f)-I

b =  _2 itQ + (2 + f ( a-J) * g(Q)JP , (51)

Combining (49), (50), and (51) results in

2
(1 + 8- fg(Q)J6 - (o ig (+ ,)%(r=O)(1-q) (52)

We have

2 1-
2c 0(r=

O )(l-q) = Xq -  (53)

leading to the following sausage growth equation:

1

dC- fg()D= - Xq(1+g(^)(+ " d (54)

with g(Q) defined by (51) and X q defined by (53).

C. Numerical Results for Sausage Instability Growth

In this section, numerical solutions to the sausage instability

growth equation (54) are presented. The method is similar to that

discussed in Sec. II. E. for the hose instability. Figure 6 plots the

sausage amplitude 6() with parameters nr , 0 , ' ,C' and f the same as in

Fig. 2. The frequency S is 1.25 (Q/9o = 0.88) which is close to the value

Q for maximum growth, and the damping coefficient in (51) is Lee's
max

suggested value29 c = 0.7. a varies weakly with X but is strongly
max

dependent on o. Figure 6 shows no sausage instability even for q = 0.5

for this case in which f has its nominal value (f = -0.5 for tf = 1 and

n = 1).

5f
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-28

Lampe and Joyce point out that sausage instability can be

generated in the q = 0 limit if n f exceeds the limit in (46). Figure 7

plots 5(Q)for a case in which -f has been raised to 0.85 (n f = 5.67). For

- q = 0, the beam is very weakly unstable, as expected since n is slightly

above the threshold given by (46). As q is increased, significant sausage

growth appears. The critical of nf value for the onset of hose instability

drops to )f = 3.2 (f = -0.76) when q = 0.5. Since Sharp and Lampe quote

a maximum value of nf of 3 to 4 in typical beams, this reduction in the

threshold for sausage instability may allow beams to be weakly unstable if

q is sufficiently large. The hose instability linear amplitudes will be

substantially larger, however. Although sausage tends to grow out of

perturbations which are larger than those for hose, 28 any experiment which

is sausage-unstable is likely to have even more violent hose disruptions.

D. Axi-Symmetric Hollowing Instability

A violent axi-symmetric hollowing instability has been observed in

many particle simulations of propagating beams. 15 '2 7'3 0'3 1 Joyce and

15
Lampe showed that this instability is driven by avalanche ionization in

the high E/p region near the front of the beam and proposed that the

instability is triggered if (E/p)max > 130 kV-cm 1--atm -1  = (E/P) crit .

Ekdahl et al. have observed violent hollowing instability on the IBEX

'w. experiment for beams propagating at pressures of 10-80 torr. 3 1 Simulations
frey31

by Godfrey have reproduced the hollowing instability at pressures

* .?.somewhat above the 80 torr threshold and have confirmed that the

instability threshold is close to the Joyce and Lampe 1 5 prediction.

Although no detailed theory of the avalanche-driven hollowing

V instability has appeared, the instability is believed to be due to an

enhancement of a(r) and J (r) near the higher E region around the beam

23
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axis. The analysis is complicated by the fact that no Bennett-like

equilibrium exists when return current flow near the axis is enhanced, so

the simulations appear to be attempting to achieve a new equilibrium at the

same time as the instability is being generated.

Simulation studies to date have been made almost exclusively with

constant vm conductivity models. The inclusion of a vm(E/p) model could

affect the instability in several ways. Since the instability is triggered

in a high Ez region, vm and TIe f f would undoubtedly be smaller for a

Vm(E/p) conductivity model, thus increasing Ezo and increasing the growth

rate. On the other hand, the radial profile of a(r) would be less peaked

on-axis due to the higher vm(E/p) near the axis which would tend to

increase the threshold for instability. It is not clear which of those

effects would dominate. However, since the instability is driven primarily

by the strong nonlinearities in the avalanche rate coefficient for

E/p (E/o) crit, it is likely that the variable vm effects will not

change the threshold significantly. Studies with the SIMMO particle

simulation 15 using the same v (E/p) model 18 contained in the VIPER code do

not indicate a significant change in the hollowing instability threshold.
32
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V. CONCLUSIONS

The growth of the resistive hose instability in a relativistic

electron beam is strongly dependent upon the details of conductivity

generation by the beam. We have considered cases in which beam impact

ionization is the dominant conductivity generation mechanism and the

collision frequency vm is a function of E/p, the ratio of the electric

field to the neutral gas density. The introduction of variable V

introduces two important new features. First, since avm/a(E/p) > 0 for

normal weakly ionized gases, and since the electric field usually decreases

with distance from the beam head, the local dipole decay length

cTI = na(r=O)a 2/2c tends to be shorter in the front of the beam but longer

in the beam tail compared with values usually estimated from constant

collision frequency models. As a result, hose amplitudes grow very rapidly

near the front of the beam but taper off and approach a constant value in

the beam tail. The second feature is a destabilizing effect which is due

to localized decreases in the perturbed or dipole conductivity driven by

the increase in collision frequency resulting from perturbations in the

electric field.

The destabilizing effect is illustrated in Eq. (12) which shows that

the term multiplying A/K. in Ampere's Law is (4na /c)(l-(E/\ )()m /aE)).

Thus, the beam behaves as if the monopole conductivity a were replaced by

a o(l-(E/v m)(av m/aE)) =a 0(l-q). Since q > 0.5 in some cases, the

destabilizing effect can be quite strong. For cases in which q is constant

v and otherwise the assumptions of Ref. 7 are justified, a differential

equation for the hose displacement D( ) is derived. Solutions to this

equation in terms of confluent hypergeometric functions are given, as ate

numerical solutions. Plots of D() show the pattern of rapid hose growth

25 .WM
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followed by a plateau which becomes more pronounced as q approaches 1. As

q 4 0, the D() plots approach the pure power law behavior described in

Ref. 7.

Simulations of hose instability growth using the VIPER7 model allow a

more self-consistent treatment. In this model, the monopole and dipole

beam and net current densities, etc. can vary with and propagation

distance z. The two major features of variable collision frequency

described above are observed in the simulations and, in fact, were noticed

in simulations before the analytical models were obtained.

Variations in momentum transfer frequency can also affect the sausage

instability. We have extended earlier calculations of Lampe and Joyce2 8 to

include these effects and find that although variable vm dipole

conductivity effects lower the threshold for instability, strong sausage

instability growth is unlikely except in extreme cases. Such cases would

be violently hose unstable as well.
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Fig. 5 On-axis electric field P (arbitrary units), on-axis conductivity a

(arbitrary units) and fraction a*/o (left-hand scale). Data from
Case A of Fig. 4.
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Fig. 7 Sausage instability growth for various values of q. In this case,
the current neutralization fraction is set to f = -.85, and other
parameters are the same as in Fig. 6.
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